Über die Systeme Alkalidititanat-Alkalifluorid*.

5. Mitteilung zur Frage des Einflusses des Kationenradius auf die Bildungsenergie von Anlagerungsverbindungen.

Von

0. Schmitz-Dumont und A. Hildegard Schulz.

Aus dem Anorganisch-chemischen Institut der Universität Bonn.

Mit 7 Abbildungen.

(Eingelangt am 22. April 1952. Vorgelegt in der Sitzung am 8. Mai 1952.)

L. Einleitung.

In einer früheren Mitteilung¹ wurde über die Systemreihe Alkalifluorid/Alkalicarbonat berichtet. In dieser Reihe gibt wohl Kaliumund Rubidiumcarbonat je eine Verbindung der Zusammensetzung M_3CO_3F ; aber die entsprechenden Verbindungen des Lithiums, Natriums und Cäsiums existieren nicht. Daraus wurde der Schluß gezogen, daß die Bildungsenergie — B der Fluorocarbonate entsprechend der Gleichung

$$M_{2}CO_{3} + MF \rightarrow M_{3}CO_{3}F + (-B)$$
⁽¹⁾

mit wachsendem Radius des Kations M^+ von negativen zu positiven Werten ansteigt, um nach Überschreiten eines Höchstwertes wieder abzusinken. Dieses Verhalten ließ sich auf Grund einer energetischen Betrachtung deuten, die zur Aufstellung einer Beziehung zwischen Bildungsenergie und Kationenradius führte, welche für die allgemeine Reaktionsgleichung

$$\mathbf{M}_{a}[\mathbf{ZO}_{b}] + n \, \mathbf{MX} \to \mathbf{M}_{a+n}[\mathbf{ZO}_{b}\mathbf{X}_{n}] + (-B) \tag{2}$$

folgende Gestalt besitzt:

$$- B = N_L e^2 \left[\frac{k}{r + \varrho_M} - \frac{n \cdot \alpha_1}{\varrho_M + \varrho_F} \right] + Q_K.$$
(3)

^{*} Herrn Prof. Dr. G. Jantsch zum 70. Geburtstag gewidmet.

¹ O. Schmitz-Dumont und Irmgard Heckmann, Z. anorg. allg. Chem. 260, 49 (1949).

O. Schmitz-Dumont u. A. Hildeg. Schulz: Alkalidititanat-Alkalifluorid. 639

Dem System zugeführte Energiebeträge erhalten positives, vom System abgegebene negatives Vorzeichen.

Es bedeuten: r = Mittelwert zwischen den Radien der Wirkungssphären von $[ZO_b]^{a-}$ bzw. von $[ZO_bX]^{(a+n)-}$, ϱ_M und ϱ_F Radien von M+ bzw. X⁻, $\alpha_1 =$ Kristallgitterfaktor für MF (formal der *Madelung*schen Zahl ähnlich), $k = (a + n) \alpha_3 - a \alpha_2$, wenn α_2 und α_3 die entsprechenden Faktoren der Kristallgitter von $M_a[ZO_b]$ bzw. $M_{a+n}[ZO_bK_n]$ sind; $Q_K =$ Komplexbildungsenergie $([ZO_b]^{a+} + nX^- = [ZO_bX_n]^{(a+n)-} + Q^K)$, $N_L = Loschmidtsche Zahl, e = elektrisches Elementarquantum.$

Gl. (3) gibt nicht nur den Gang der *Bildungsenergie* mit steigendem Kationenradius qualitativ richtig wieder, sondern gestattet auch eine Abschätzung der *Komplexbildungsenergie* Q_K .

Den Alkalicarbonaten formal analog sind die Alkalimetatitanate M₂TiO₃. Strukturell besteht natürlich zwischen den beiden Stoffklassen ein grundsätzlicher Unterschied, indem die Alkalicarbonate Inselstruktur mit CO_3^2 als selbständigen Gitterbausteinen besitzen, während die Alkalimetatitanate entweder ein Koordinationsgitter mit statistischer Verteilung von M⁺ und Ti⁴⁺ über die Kationenplätze bilden (Li₂TiO₃), oder aber hochpolymere Anionen (TiO3), 2n-, ähnlich den Metasilikaten, jedoch mit sechszähligem Ti⁴⁺ als Zentralionen, enthalten dürften. Trotzdem besteht grundsätzlich die Möglichkeit, daß derartige Koordinationsgitter oder Gitter mit ein-, zwei- oder sogar dreidimensional verknüpften anionischen Koordinationspolyedern in unserem Fall durch Einbau von Alkalifluorid in Gitter mit Inselstruktur verwandelt werden, indem die Fluorionen unter Sprengung von Ti-O-Ti-Bindungen in eine direkte Koordination zu den Ti-Atomen treten und begrenzte Komplexionen ausbilden. Unter diesem Gesichtswinkel betrachtet, lag es nahe, auch die Alkalimetatitanate in den Bereich der Untersuchungen über den Zusammenhang zwischen Kationengröße und Bildungsenergie von Anlagerungsverbindungen einzubeziehen. Voraussetzung für die experimentelle Bearbeitung war natürlich die Möglichkeit, Alkalimetatitanate rein darzustellen. Wie wir durch eigene Versuche bestätigen konnten, besteht diese Möglichkeit für das Kaliumsalz sicher nicht. Wahrscheinlich trifft Analoges auch für das Rb- und Cs-Salz zu. Damit erübrigte sich die Untersuchung der Systemreihe MF/M₂TiO₃. Im Gegensatz zu den Alkalimetatitanaten lassen sich die Alkalidititanate M2Ti2O5 ohne Schwierigkeit durch Zusammenschmelzen von Alkalicarbonat mit TiO₂ im Molverhältnis 1:2 gewinnen. Das Schmelzen und Erstarren erfolgt einheitlich bei definierten Temperaturen unter alleiniger Abscheidung von Dititanat. Damit ist die wesentlichste Voraussetzung für die Untersuchung der Systemreihe Alkalifluorid/Alkalidititanat gegeben. Wir prüften das Verhalten der Alkalidititanate zu den Alkalifluoriden, um zu sehen, ob auch hier das Auftreten von Verbindungen in den einzelnen Systemen MF/M2Ti2O5

von der Kationengröße abhängt. Damit ziehen wir erstmalig Verbindungen in den Bereich unserer Untersuchungen, die strukturell durch das Vorhandensein von *dreidimensional vernetzten Koordinationspolyedern*

charakterisiert sind. Wir berichten zunächst über unsere Versuchsergebnisse, um nach eingehender Diskussion derselben zum Schluß auf die Frage der Existenz von *Alkalimetatitanaten* einzugehen.

II. Versuchsergebnisse.

Wir untersuchten mit Hilfe der thermischen Analyse die Systeme $KF/K_2Ti_2O_5$, $RbF/Rb_2Ti_2O_5$ und $CsF/Cs_2Ti_2O_5$. Wie aus den Erstarrungsdiagrammen (Abb. 1, 2 und 3) hervorgeht, kommt nur in den Systemen mit RbF und CsF je eine *kongruent* schmelzende Verbindung vor, während KF mit $K_2 Ti_2O_5$ nur ein einfaches eutektisches System bildet. Das Diagramm des Systems mit RbF zeichnet sich durch ein flaches, das des Systems mit CsF durch ein ausgeprägt spitzes Maximum aus. Die Maxima beider Systeme liegen bei 40 Mol-% MF. Danach besitzen die Verbindungen die Zusammensetzung $3 Rb_2 Ti_2O_5 \cdot 2 RbF$ bzw. $3 Cs_2 Ti_2O_5 \cdot 2 CsF$. Die Existenz der *Rubidiumverbindung* geht sowohl aus dem Röntgenogramm (Abb. 4) als auch aus den optischen Eigenschaften hervor. Rubidium-Dititanat und -Fluorodititanat kristallisieren beide in rhombischen Nadeln, bei ersterem liegt n_{α} , bei letzterem aber n_{ν} parallel zur Nadel-

achse. Außerdem zeigt das Dititanat höhere Interferenzfarben als die Die Fluoroverbindung. Cäsiumverbindung kristallisiert aus der Schmelze ebenfalls in langen Nadeln, die aber nach dem Abkühlen auf Raumtemperatur zu einem mikrokristallinen Pulver zerfallen. Das gleiche Verhalten zeigt Cäsiumdititanat, was bereits von $Barblan^2$ beobachtet wurde. Vielleicht handelt es sich um eine enantiotrope Umwandlung. Das Rönt-

genogramm des Cäsiumdititanats weist keine Ähnlichkeit mit dem des Rubidiumdititanats auf (Abb. 4). Die zerfallenen Kristalle des Cäsiumfluorodititanats gaben das gleiche Röntgenogramm (Abb. 4) wie das entsprechende Dititanat. Auch im optischen Verhalten (schiefe Auslöschung) sind keine Unterschiede vorhanden. Es besteht somit kein Zweifel, daß Cäsiumfluorodititanat bei Raumtemperatur nicht beständig ist und in die Komponenten zerfällt. Das Vorhandensein von CsF ließ sich allerdings nicht mit Sicherheit aus dem Röntgenogramm entnehmen, was aber nicht viel besagt, zumal die starken CsF-Linien in unmittelbarer Nähe der Linien des Dititanats liegen bzw. mit diesen koinzidieren.

III. Diskussion der Versuchsergebnisse.

Über die Struktur der nachgewiesenen Fluorodititanate $M_8Ti_6O_{15}F_2$ kann nur soviel gesagt werden, daß es sich nicht um Inselstrukturen

² F. F. Barblan, Schweiz. mineral. petrogr. Mitt. 23, 295 (1943).

handeln dürfte, da die Zahl der in das Kristallgitter der Dititanate eingelagerten Fluorionen zu gering ist, um eine genügende Anzahl von Ti-O-Ti-Brücken zu sprengen, wie es zur Ausbildung begrenzter komplexer Anionen notwendig wäre. Die Struktur der Alkalidititanate ist noch nicht mit genügender Sicherheit bekannt, um von hier aus den Versuch zur Entwicklung einer Strukturmöglichkeit für die Fluorodititanate wagen zu können.

Abb. 4. Debyeogramme (Cu-K_{α}-Strahlung).

Nach einem Strukturvorschlag von Barblan² befinden sich bei den rhombischen Alkalidititanaten im Kristallgitter (TiO₆)-Oktaederketten in Richtung der c-Achse. Die Oktaeder sind im Zickzack so angeordnet, daß ein herausgegriffener Oktaeder mit den zwei benachbarten je eine gemeinsame Kante hat und alle drei Oktaeder eine gemeinsame Spitze besitzen, wie aus Abb. 5 hervorgeht. Diese Oktaederketten sind in allen drei Raumrichtungen über gemeinsame Ecken miteinander verknüpft. Senkrecht zur c-Achse ergeben sich, zwischen den aneinandergrenzenden Ketten befindlich, durchgehende Hohlräume, welche nach Barblan für die Alkaliionen Platz bieten. Die stöchiometrische Zusammensetzung $M_2Ti_2O_5$ erfordert, daß jede in einer Netzebene (Abb. 5) vorhandene Lücke mit zwei Alkaliionen besetzt ist, was aber sehr unwahrscheinlich ist. Davon abgesehen, läßt sich auf Grund des Strukturvorschlages von *Barblan* die Bildung des Fluorodititanats $M_8Ti_6O_{15}F_2$ nur schwer verstehen. Nimmt man an, daß entsprechend dem in Abb. 5 wiedergegebenen Schema in einer Ebene etwa parallel zur *b*-Achse sämtliche Verknüpfungen (A) zwischen den aneinandergrenzenden Oktaederketten gesprengt und in gleicher Weise die Verknüpfungen (B) zwischen der nächsten und übernächsten Kette durch den Eintritt von Fluorionen

gelöst werden, so würde sich die stöchiometrische Zusammensetzung M_{16} Ti₁₂ O_{30} F₃ und nicht M_8 Ti₆ O_{15} F₂ ergeben.

Betrachten wir nun die Reaktion zwischen Alkalidititanat und Alkalifluorid, so können wir folgende Feststellung machen: Da die Kaliumverbindung nicht, wohl aber die Rubidiumverbindung existiert, ist zu folgern, daß in der Systemreihe Alkalifluorid/Alkalidititanat die Bildungsenergien —B entsprechend der Reaktionsgleichung

$$\begin{array}{l} 3 \,\mathrm{M_2Ti_2O_5} + 2 \,\mathrm{MF} = \\ = \,\mathrm{M_8Ti_6O_{15}F_2} + (-B) \end{array} \tag{5}$$

zunächst ansteigen, und zwar von negativen (K-Verbindung) zu posi-

Abb. 5. Ausschnitt aus einer Netzebene von Na₂Ti₂O₅ nach Barblan.

tiven (Rb-Verbindung) Werten. Da die Cäsiumverbindung im Gegensatz zur Rubidiumverbindung spontan zerfällt, dürfte die Bildungsenergie, auf Raumtemperatur bezogen, beim Übergang $Rb_8Ti_6O_{15}F_2 \rightarrow Cs_8Ti_6O_{15}F_2$ wieder absinken. Das Verhalten der Alkalidititanate gegenüber Alkalifluoriden ähnelt etwa demjenigen der Alkalimetavanadate MVO₃. In der Systemreihe Alkalifluorid/Alkalimetavanadat³ steigt die Bildungsenergie der hier vorkommenden Verbindungen $M_3VO_3F_3$ mit zunehmendem Kationenradius monoton an, und zwar von der Li- zur Rb-Verbindung und wahrscheinlich weiter zur Cs-Verbindung. Auch die Metavanadate und wahrscheinlich auch die Fluorometavanadate besitzen keine eigentlichen Inselstrukturen, sondern hochpolymere Anionen, welche den ganzen Kristallit durchziehen. Immerhin wird im Falle dieser eindimensionalen Verknüpfung der Baugruppen die Anwendung der Gl. (3) noch berechtigt

³ O. Schmitz-Dumont und Erika Schmitz, Z. anorg. allg. Chem. 252, 329 (1944).

sein, indem man für r in erster Näherung den Mittelwert zwischen den beiden Radien der die Baugruppen VO₄ bzw. VO₄F₂ einschließenden Kugeln einsetzt. Für Q_K wäre der Wert $N_L \Phi/n$ einzusetzen, wenn Φ die Arbeit ist, die bei der Anlagerung von 2 n F-Ionen an ein aus n Baugruppen bestehendes Anion $(\text{VO}_3)_n^{n-}$ aufzuwenden ist $(N_L = Loschmidtsche$ Zahl). Bei einer dreidimensionalen Vernetzung, wie sie bei den *Dititanaten* und wahrscheinlich auch bei den *Fluorodititanaten* vorliegt, kann die Beziehung (3) nicht angewandt werden. Die Größe Q_K hat ihren Sinn als Komplexbildungsenergie verloren. Ferner kann man bei dem Vorhandensein eines dreidimensionalen vernetzten Ti—O-Gerüstes nicht erwarten, daß ein einfacher Zusammenhang zwischen Gitterenergie⁴ und Radius ϱ_M des Alkaliions von der Gestalt

$$U = \frac{-A}{\varrho_M + a} \tag{6}$$

besteht (A und a = konst.). Letzteres geht schon daraus hervor, daß die Molvolumina⁵ der Alkalidititanate sich nur sehr angenähert nach dem Ansatz $V = \Delta v + k \, \varrho_M{}^3$ berechnen lassen ($\Delta v = \text{Volumeninkrement}$ des Ti—O-Gerüstes, k = konst.). Trotzdem ergeben die Experimentalbefunde einen eindeutigen Zusammenhang zwischen *Bildungsenergie* und *Kationenradius*, der qualitativ dem durch Gl. (3) wiedergegebenen ähnelt. Um diesen Befund zu deuten, können wir von der Gleichung

$$-B_T = -U_K + 3 U_2 + 2 U_1 \tag{7}$$

ausgehen $(U_K, U_2 \text{ und } U_1 = \text{Gitterenergien von } M_8 \text{Ti}_6 O_{15} \text{F}_2, M_2 \text{Ti}_2 O_6$ bzw. MF. — *B* stellt die Affinität der Reaktion $3 M_2 \text{Ti}_2 O_5 + 2 \text{ MF} =$ $= M_8 \text{Ti}_6 O_{15} \text{F}_2$ bei der Temperatur $T = 0^\circ \text{K} \text{ dar.} - U_1 \text{ nimmt mit steigendem Kationenradius } \varrho_M$ ab, entsprechend einer hyperbolischen Funktion

$$U_1 = \frac{-\alpha'}{\varrho_M + \varrho_F}.$$
(8)

Wenn — B_T mit ϱ_M ansteigen soll, muß $\Delta U = -U_K + 3 U_2$ mit zunehmendem ϱ_M weniger abnehmen als U_1 . Dies ist unter allen Umständen, von $\varrho_M = 0$ ausgehend, der Fall, wie aus folgender Überlegung hervorgeht. Für unsere mehr qualitative Betrachtung können wir annehmen, daß sich die Gitterenergien für $M_8Ti_6O_{15}F_2$ und $M_2Ti_2O_5$ nach dem einfachen Ansatz

$$U_{\underline{K}} = \frac{-A}{\varrho_M + a}$$
 bzw. $U_2 = \frac{-C}{\varrho_M + c}$ (A u. $C = \text{konst.}$) (9)

annähernd berechnen lassen. Wir machen die plausiblen Annahmen, daß 1. A > 3 C und daß 2. die für die Gitterdimensionen charakteristischen

⁴ Als Gitterenergie ist hier die Arbeit bezogen auf ein Mol zu verstehen, die beim Aufbau des Gitters aus Ti⁴⁺, M⁺ und O²⁻ bzw. aus Ti⁴⁺, M⁺, O²⁻ und F⁻ gewonnen wird.

⁵ Die Molvolumina wurden von Barblan, l. c., bestimmt.

Konstanten a und c größer als ϱ_F sind $[\varrho_F$ in (8) entspricht den Konstanten a und c]. Die erste Annahme entspricht der Notwendigkeit, daß ($-U_{\kappa}$ + $(+3 U_2) > 0$ ist. Andernfalls können keine positiven Werte für (-B)resultieren. Die Annahme 2 hat zur Folge, daß die den Funktionen (9) entsprechenden Hyperbeln flacher verlaufen als die Hyperbel, welche der Funktion (8) entspricht. Da die zum Gitter von M₈Ti₆O₁₅F₂ gehörende Konstante a keinesfalls kleiner, sondern wahrscheinlich infolge der Einlagerung von F⁻ in das Dititanat-Gitter größer als die zum Gitter von $M_2Ti_2O_5$ gehörende Konstante c ist, muß auch die Differenz $\Delta U =$ $= -U_K + 3 U_2$ mit zunehmendem ϱ_M weniger abfallen als U_1 . Daraus ergibt sich, daß die Differenz $\Delta U + U_1$ und somit auch -B, bei $\varrho_M = 0$ beginnend, mit zunehmendem ϱ_M zunächst ansteigen muß. Da alle drei für die Gitterenergien U_K , U_2 und U_1 maßgebenden Funktionen (9) und (8) bei Annäherung von ϱ_M gegen ∞ dem Werte Null zustreben, ist vorauszusehen, da $\beta - B$ nach Überschreiten eines Höchstwertes wieder abnimmt. Daraus folgt, daß die Funktion — $B(\rho_M)$ einen ähnlichen Verlauf zeigt wie die für wahre Komplexverbindungen abgeleitete, der Gl. (3) entsprechende Funktion $B(\rho_M)$.

Bei Temperaturen $T > 0^{\circ}$ K kommt in Gl. (7) noch die Änderung der Gesamtenthalpie Δh und das Entropieglied $T \Delta S$ hinzu:

$$-B_T = -U_K + 3 U_2 + 2 U_1 - \Delta h + T \Delta S = \Delta U - \Delta h + T \Delta S.$$
(10)

Während die Differenz ΔU eine Funktion des Kationenradius ϱ_M ist, gehen statt dessen in Δh und ΔS außer den Molvolumina, die wiederum von g_M abhängen, im wesentlichen noch die Molgewichte der an der Reaktion (5) beteiligten Stoffe ein, die mit dem Gewicht des Kations M^+ entsprechend anwachsen [vgl. die Näherungsformel von Eastman, J. Amer. chem. Soc. 45, 80 (1923), zur Berechnung von Entropien]. Δh und ΔS werden sich deshalb beim Übergang vom Li- zum Cs-Salz ändern, und zwar in gleichem Sinne. Bei der hier behandelten Systemreihe werden Δh und ΔS positiv sein; nur so ist zu erklären, daß Cäsiumfluorodititanat bei niederer Temperatur zerfällt, aber bei höherer stabil ist. Wenn Δh und ΔS positiv sind, folgt, daß oberhalb einer bestimmten Temperatur die Differenz $(-\Delta h + T\Delta S) > 0$ wird; sie steigt beim Übergang vom Li- zum Cs-Salz, das heißt mit dem Kationenradius ϱ_M an, was sich im Sinne einer Erhöhung der freien Enthalpie — B_T geltend macht. Ein Anstieg von — B_T mit ϱ_M kann also durch Überlagerung zweier Effekte zustande kommen, 1. durch das Wechselspiel der Gitterenergien, sofern das Maximum der Funktion $\Delta U(\rho_M)$ noch nicht überschritten ist, und 2. durch das Anwachsen der Differenz aus dem Entropieglied und der Enthalpieänderung. Das Auftreten eines Maximums für $-B_T$, wie es bei der vorliegenden Systemreihe der Fall ist, wird allein durch die

Monatshefte für Chemie. Bd. 83/3.

Änderung $\frac{\delta \Delta U}{\delta \varrho_M}$ bedingt. Jedoch wird der Höchstwert von $-B_T$ in Richtung größerer Kationenradien ϱ_M verschoben, wenn die Differenz $(-\Delta h + T\Delta S) > 0$ ist.

Zusammenfassend kann man sagen, daß die Bildungsenergie von Doppelverbindungen vom Typ $M_{a+n}[ZY_bX_n]$, die ebenso wie ihre Komponenten $M_a[ZY_b]$ und MX keine Inselstruktur, das heißt nicht den Charakter eigentlicher Komplexverbindungen besitzen, mit ansteigendem Kationenradius g_M einen ähnlichen Verlauf mit einem Maximum zeigt

Abb. 6. Erhitzungskurven.

wie diejenige von solchen Anlagerungsverbindungen, welche als *wahre Komplexsalze* aufzufassen sind.

IV. Über die Existenz von Alkalimetatitanaten.

Das im NaCl-Gitter kristallisierende Lithiummetatitanat Li₂TiO₃ kann als reine, wohldefinierte Verbindung erhalten werden. Es scheint, daß außer dieser nur noch die Na-Verbindung aus Na₂O und TiO₂ als reiner Stoff mit definiertem Schmelz- und Erstarrungspunkt erhalten werden kann. Nach unseren Experimentalbefunden dürfte die Kaliumverbindung nicht vollkommen rein zu gewinnen sein. Schmelzen, welche K₂O und TiO₂ im Molverhältnis 1 : 1 enthalten, scheiden beim Erstarren neben K₂TiO₃ stets Kaliumdititanat K₂Ti₂O₅ und K₂O aus als Folge

eines in der Schmelze vorliegenden Gleichgewichtes

$$2 \operatorname{K}_{2}\operatorname{TiO}_{3} \rightleftharpoons \operatorname{K}_{2}\operatorname{Ti}_{2}\operatorname{O}_{5} + \operatorname{K}_{2}\operatorname{O}.$$

$$(11)$$

Wir versuchten, Kaliummetatitanat durch Zusammenschmelzen von K_2CO_3 mit TiO₂ im Molverhältnis 1:1 darzustellen. Es zeigte sich jedoch, daß die Gewinnung von Schmelzen, welche der genauen stöchiometrischen Zusammensetzung K_2TiO_3 entsprechen, mit Schwierigkeiten verbunden ist, wenn man von TiO₂ und K_2CO_3 ausgeht (vgl. die Tabelle 1 auf S. 649). Um alles CO₂ auszutreiben, bedarf es längeren Erhitzens über den Schmelzennkt hinaus. Nach 6stündigem Erhitzen auf 1100° C enthält die Schmelze immer noch 0,5 bis 1% CO₂. Anderseits verdampfen unter diesen Bedingungen bereits nennenswerte Mengen Alkalioxyds (etwa 3 bis 4% des Gesamtalkalis). Im besten Fall erhielten wir durch Anwendung eines 4% igen Überschusses an K_2CO_3 einen Schmelzkuchen, der noch

0,6% CO₂ enthielt und ein Defizit von 0,7% des Gesamtalkalis hatte⁶. Es ist einleuchtend, daß man unter diesen Umständen keine reproduzierbaren Abkühlungskurven von den Metatitanatschmelzen erhalten kann. Stets beobachteten wir bereits zwischen 893 und 890° C einen ersten thermischen Effekt, der sich beim Animpfen mit abgeschreckter Schmelze als deutlicher Knickpunkt auf den Abkühlungskurven (Kurve 1 und 2, Abb. 6) zu erkennen gab. Impfte man nicht, so wurde statt des Knickpunktes ein plötzlicher starker Temperaturanstieg von annähernd 30° C im Bereich von 820 bis 860° C, offenbar eine Folge von Unterkühlung,

Abb. 7. Debyeogramme (Cu- K_{α} -Strahlung).

beobachtet. Visuell konnte festgestellt werden, daß in der stets schwach trüben Schmelze bei 898 $\pm 2^{\circ}$ C eine Kristallisation einsetzte, so daß bereits bei 890° das Thermoelement nicht mehr aus der Schmelze gezogen werden konnte. Endgültige Erstarrung erfolgte im Bereich von 810 bis 785°C.⁷ Der rosafarbige Schmelzkuchen bestand aus verfilzten nadeligen Kristallen. Wir nehmen an, daß als Folge des in der Schmelze bestehenden Gleichgewichtes (11) die Primärkristallisation aus Kaliumdititanat besteht und daß sich bei etwa 810°C neben K₂O in der Hauptsache Kaliummetatitanat abscheidet. Das Röntgenogramm der erstarrten Schmelze zeigte dementsprechend außer den starken Linien des K₂Ti₂O₅ noch neue Linien, welche wir dem K₂TiO₃ zuordnen (Abb. 7). Unsere Befunde waren die gleichen, ob die Abkühlungskurven unter Anwendung von 8 bis 10 g Substanz und eines normalen Platintiegels oder eines Mikroplatintiegels mit 0,5 bis 0,8 g Substanz aufgenommen wurden. Auf den Erhitzungskurven machte sich lediglich ein thermischer

⁶ E. W. Washburn und E. N. Bunting [Bur. Standards J. Res. 12, 239 (1934)] erhielten Na_2TiO_3 durch Zusammenschmelzen von Na_2O und TiO_2 .

⁷ Nach Versuchen von K. Kiefer. — Vgl. auch P. Niggli, Z. anorg. allg. Chem. 98, 241 (1916). — J. D'Ans und Löffler, Ber. dtsch. chem. Ges. 63, 1446 (1930). — E. Junker, Z. anorg. allg. Chem. 228, 97 (1936). — H. Lux, Z. Elektrochem. 53, 45 (1949).

Effekt bei etwa 800° C bemerkbar, der aber nicht als der eigentliche Schmelzpunkt des K₂TiO₃ betrachtet werden darf⁸. In Abb. 3 (Kurve 1) ist eine derartige Erhitzungskurve dargestellt. Zum Vergleich ist eine Erhitzungskurve des einen definierten Schmelzpunkt besitzenden Na₂TiO₃ eingezeichnet (Kurve 2). Versuche zur Gewinnung der *Metatitanate* des *Rubidiums* und *Cäsiums* hatten kein grundsätzlich anderes Ergebnis.

V. Thermische Daten.

Eutektische Temperaturen und Zusammensetzungen.

Teilsystem I.

648

 ${
m K_{2}Ti_{2}O_{5}/{
m KF}}$ 825° C 77 Mol-% KF

 $Rb_{2}Ti_{2}O_{5}/Rb_{8}Ti_{6}O_{15}F_{2}$ 820° C 30 Mol-% RbF Rb₈Ti₆O₁₅F₂/RbF 780° C 93 Mol-% RbF

Teilsystem II.

 $\begin{array}{c} {\rm Cs_2Ti_2O_5/Cs_8Ti_6O_{15}F_2} \ 825^\circ \,{\rm C} \\ 35 \ {\rm Mol-\%} \ {\rm CsF} \end{array}$

 $\begin{array}{c} {\rm Cs_8Ti_6O_{15}F_2/CsF} \ \ 613^\circ {\rm C} \\ {\rm 82 \ Mol-\% \ \ CsF} \end{array}$

VI. Experimentelle Angaben.

Darstellung der Alkalidititanate. Die Alkalidititanate wurden durch Zusammenschmelzen von TiO₂ (2 Mol.) mit Alkalicarbonat (1 Mol.) erhalten. Die Gemische von TiO₂ (aus wäßr. Lösung von TiCl₄ mit NH₃ · aq gefällt und bei 1000° C zur Gewichtskonstanz geglüht) mit dem bei 600° C getrockneten Alkalicarbonat wurden in einen auf 800° C vorgeheizten Tiegelofen gebracht. Die Temperatur wurde langsam auf 1200° C gesteigert, wobei das CO₂ quantitativ ausgetrieben wurde. Eine merkbare Verflüchtigung von Alkalioxyd trat hierbei nicht ein. Die Schmelzen der Dititanate waren im Gegensatz zu denen der Metatitanate vollkommen klar. Sie neigen stark zu Unterkühlungen, die durch Animpfen zu beseitigen sind. Allem Anschein nach erleidet Cs₂Ti₂O₅ eine enantiomorphe Umwandlung, denn die aus der Schmelze ausgeschiedenen großen Kristalle zerfallen schließlich zu einem lockeren Kristallpulver.

Röntgenographische Untersuchung. Zur Untersuchung aller Verbindungen wurde Cu— K_{α} -Strahlung (doppeltes Ni-Filter) verwandt und der Film mittels Al-Folie abgedeckt. Pulvern und Abfüllen der Substanz geschah unter Feuchtigkeitsausschluß.

Analytisches. Zur Analyse der Meta- und Dititanate wurde in konz. Schwefelsäure heiß gelöst und nach dem Verdünnen mit Wasser das Titan

⁸ U. Nisioka [Sci. Rep. Tohoku Imp. Univ. (1) 23, 250 (1934)] gibt die Abkühlungskurve einer aus K_2CO_3 (1 Mol.) und TiO₂ (1 Mol.) erhaltenen Schmelze wieder. Der damit erfaßte Temperaturbereich ist jedoch so klein, daß lediglich der zweite thermische Effekt bei 810° als Haltepunkt zu erkennen ist.

mittels Cupferrons gefällt (Verglühen des Niederschlages zu TiO₂ als Wägungsform). Bestimmung des Alkalis im Filtrat als Sulfat.

Vers. Nr.	Temp. ⁰ C	Dauer Stunden	TiO 2 %	K ₂ O %	CO ₂ %	K ₂ O-Verlust % des Gesamtalkalis
1	1100	40	51.8	48,3	0.4	11.0
2	1100	40	51,1	48.0	0,9	11,0
3	1100	20	47.8	50,9	1,3	6,1
4	1100	20	47,7	50,9	1,4	6,1
5	1100	6	46,7	52,6	0,8	3,0
6	1100	4	44,8	52,0	3,1	4,0
7	1100	6	46,1	53,9	0,6	0,6
8	1100	6	45,8	53,4	0,7	1,5

Tabelle 1. Zusammensetzung der Metatitanatschmelzen⁷.

K₂TiO₃. Ber. TiO₂ 45,8; K₂O 54,2.

Versuche 7 und 8 ausgenommen, wurden stets äquivalente Mengen TiO_2 und K_2CO_3 zusammengeschmolzen. Aus obiger Tabelle 1 ist zu ersehen, daß in keinem Falle, selbst nach 40stünd. Erhitzen, CO_2 -freie Produkte resultierten; anderseits traten beträchtliche Verluste an K_2O durch Verdampfen ein. Bei den Versuchen 7 und 8 wurde ein 4%iger Überschuß an K_2CO_3 verwandt.

Tabelle 2. Dititanate.

			~ 3
Ti ber	37,71 2	27,63 21,7	0

Zusammenfassung.

Es werden die Systeme $\mathrm{KF/K_2Ti_2O_5}$, $\mathrm{RbF/Rb_2Ti_2O_5}$ und $\mathrm{CsF/Cs_2Ti_2O_5}$ mit Hilfe der thermischen Analyse und röntgenographisch untersucht. In den Systemen mit RbF und CsF kommt je eine kongruent schmelzende Verbindung der Zusammensetzung $\mathrm{M_8Ti_6O_{15}F_2}$ vor. Dagegen gibt KF mit $\mathrm{K_2Ti_2O_5}$ keine Verbindung, sondern nur ein einfaches Eutektikum. Daraus wird geschlossen, daß im Einklang mit einer früher abgeleiteten Beziehung zwischen Kationengröße und Bildungsenergie letztere auch in der vorliegenden Systemreihe mit zunehmendem Kationenradius ansteigt, obwohl es sich hier nicht um Komplexe mit Inselstruktur handelt, für welche die genannte Beziehung entwickelt wurde.

Eine energetische Betrachtung zeigt, daß die Bildungsenergie der Doppelverbindungen vom Typ $M_{a+n}[ZY_bX_n]$ auch dann mit dem Kationenradius zunächst ansteigen und nach Überschreiten eines Höchstwertes wieder abfallen muß, wenn sowohl $M_{a+n}[ZY_bX_n]$ als auch die Komponenten $M_a[ZY_b]$ und MX keine Inselstruktur besitzen. Im Gegensatz zu Rubidiumfluorodititanat zerfällt die analoge Cäsiumverbindung bei Raumtemperatur in die Komponenten.